Put It All Together

Write a fraction for each part of the region，set，or number line that is shaded．

1111 1.	それだな 2. \qquad				H11111 4. \qquad
5. \qquad					000N 0NON 8. \qquad

Multiple Choice
\qquad 9．There are 12 boys and 10 girls in Mrs．Raymond＇s class．What fraction of Mrs．Raymond＇s class is girls？
A．$\frac{10}{12}$
B．$\frac{12}{10}$
C．$\frac{12}{22}$
D．$\frac{10}{22}$

10．A pizza was divided into 8 equal slices．Paxton ate I slice， Grayson ate 3 slices，and Jace ate 4 slices．What fraction of the pizza did Grayson eat？
A．$\frac{1}{8}$
B．$\frac{3}{8}$
C．$\frac{4}{8}$
D．$\frac{5}{8}$

Name

Practice Sheet

Use Models to Find Equivalent Fractions

A fraction can have many different names. Fractions that name the same amount are called equivalent fractions.

Example: Let's find some fractions that are equivalent to $\frac{1}{2}$.
Step 1: Draw a model to represent $\frac{1}{2}$ Step 2: Divide each half in half.

Step 1

Step 2 Step 3 So, $\frac{1}{2}$ is equivalent to $\frac{2}{4}$. Both fractions name the same amount.

Step 3: Divide each part from Step 2 in half again. So, $\frac{1}{2}$ is also equivalent to $\frac{4}{8}$, and $\frac{2}{4}$ is equivalent to $\frac{4}{8}$.

Use the models below to write an equivalent fraction. You will need to divide the parts of the second model to make an equivalent fraction.
I.

2.

3.

4.

5.

6.

Use Models to Find Equivalent Fractions
More Practice
Use the models below to write an equivalent fraction.

2.

3.

4.

5.

6.

7.

8.

Are the fractions below equivalent? Prove it with a picture. Write $=$ or \neq.
9 .

10.

II.

12.
 $\frac{5}{6} \bigcirc \frac{9}{10}$

Generate Equivalent Fractions

To generate equivalent fractions without drawing a model, multiply the numerator and denominator of a fraction by the same number.

Examples: $\frac{2}{3} \frac{x 2}{x 2}=\frac{4}{6} \quad \frac{2}{3} \frac{x 3}{x 3}=\frac{6}{9} \quad \frac{3}{10} \frac{x 3}{x 3}=\frac{9}{30} \quad \frac{3}{10} \frac{x 5}{x 5}=\frac{15}{50}$

Write two equivalent fractions for each fraction below.

2. $\frac{3}{5} \square=-$
3. $\frac{5}{6} \square=-$
$\frac{3}{5} \square=-$
$\frac{5}{6} \square=-$
4. $\frac{7}{8} \square=-$
5. $\frac{1}{3} \square=-$
6. $\frac{3}{4} \square=-$
$\frac{7}{8} \square=-$
$\frac{1}{3} \square=-$

$$
\frac{3}{4} \square=-
$$

Are the fractions below equivalent? Write $=$ or \neq.
(HINT: Have the numerator and denominator been multiplied by the same number?)
7.

8.

9.

Name

Equivalent Fractions with Missing Values

What number will make these 2 fractions equal?

Remember: To make an equivalent fraction, what you do to the numerator, you must do to the denominator.

Fill in the missing value to make both fractions equivalent.

1. $\frac{1}{2}=\frac{\square}{8}$
2. $\frac{3}{4}=\frac{9}{\square}$
3. $\frac{2}{5}=\frac{\square}{20}$
4. $\frac{5}{6}=\frac{10}{\square}$
5. $\frac{1}{3}=\frac{\square}{15}$
6. $\frac{7}{10}=\frac{21}{\square}$
7. $\frac{3}{8}=\frac{\square}{32}$
8. $\frac{4}{5}=\frac{40}{\square}$
9. Jeremy's pizza was cut into 6 equal slices, and he ate 4 pieces. Zachary's pizza was cut into 12 equal slices. How many pieces does Zachary need to eat so that he and Jeremy have eaten an equal amount?
*Prove it with a picture.
10. Katie has $\frac{15}{20}$ of a dollar in her pocket. Lisa has the same amount of money in her pocket. What fraction of a dollar does Lisa have in her pocket?
A. $\frac{5}{10}$
B. $\frac{3}{4}$
C. $\frac{4}{5}$
D. $\frac{2}{10}$

Name

Practice Sheet

Put It All Together

Fill in the first model to represent the fraction given. Then, write an equivalent fraction for each fraction and prove it with a model.
I.

$\frac{1}{4} \square=-$
2. $\frac{3}{8} \square$
$\square=-$
3. $\frac{2}{6} \square=-$

Are the fractions below equivalent? Write $=$ or \neq.
4.

5.
$\frac{5}{6} \bigcirc \frac{15}{18}$
6.

7.

Fill in the missing value to make both fractions equivalent.
8. $\frac{1}{7}=\frac{\square}{28}$
9. $\frac{4}{9}=\frac{16}{\square}$
10. $\frac{3}{4}=\frac{\square}{12}$
II. $\frac{2}{5}=\frac{10}{\square}$
12. Stephanie baked a cake and cut it into 15 equal pieces. She put icing on 9 pieces. Tammy baked the same size cake and cut her cake into 5 equal pieces. How many pieces of cake should Tammy put icing on so that it is equivalent to the amount of icing on Stephanie's cake?
13. Bryan and Caden have both completed the same amount of their homework so far. If Bryan has completed $\frac{8}{12}$ of his homework, how ${ }^{12}$ much has Caden completed?
A. $\frac{2}{3}$
B. $\frac{3}{4}$
C. $\frac{3}{5}$
D. $\frac{2}{4}$

Name

Fractions in Simplest Form

A fraction is in its simplest form when the only common factor of the numerator and denominator is 1 .

Example: $\frac{3}{4} \quad$ Factors: $1,1,3$
The only common factor of 3 and 4 is 1 , so this fraction is in simplest form.
Example: 4 Factors: $1,2,4$ (4) 2 and 4 are common factors of both 8 Factors: 1, 2, 4, 8 numbers, so this fraction is NOT in simplest form.
$\underline{4} \div 4=1 \quad$ Since 4 is the greatest common factor (GCF) of
$\overline{8} \div 4=\overline{2} \quad$ both numbers, divide both numbers by 4 .
For each fraction below, write the factors of the numerator and denominator. If the only common factor is I, circle "yes" it is in simplest form. If there are other common factors besides I, circle "no" and divide both the numerator and denominator by the greatest common factor (GCF).
I. 2 Factors: \qquad 6 Factors: \qquad
Is this fraction in simplest form? Yes/No Reduce if needed: $\frac{2}{6} \div \square=-$
2. 6 Factors: \qquad
9 Factors: \qquad
Is this fraction in simplest form? Yes/No Reduce if needed: $\frac{6}{9} \div \square=$
3. $\frac{5}{7}$ Factors: \qquad
Factors: \qquad
Is this fraction in simplest form? Yes/No Reduce if needed: $\frac{5}{7 \div \square}=-$

Name

Fractions in Simplest Form: More Practice

For each fraction below, write the factors of the numerator and denominator. If the only common factor is 1 , circle "yes" it is in simplest form. If there are other common factors besides I, circle "no" and divide both the numerator and denominator by the greatest common factor (GCF).
I. 4 Factors: Is this fraction in simplest form? Yes/No 12 Factors: Reduce if needed: $\frac{4 \div \square}{12 \div \square}=-$
2. 3 Factors: \qquad Is this fraction in simplest form? Yes/No Reduce if needed:

$$
\frac{3}{10 \div \square}=-
$$

3. 9 Factors: 15 Factors:

Is this fraction in simplest form? Yes/No Reduce if needed: $\underline{9} \div$

Write each fraction below in simplest form. If the fraction is already in simplest form, write "simplest form."
4. $\frac{5}{10}$
5. $\frac{2}{12}$
6. $\frac{3}{5}$
7.
$\frac{8}{12}$
8. $\frac{11}{15}$
9. $\frac{4}{9}$
10. $\frac{4}{16}$
11. $\frac{10}{12}$
12. $\frac{6}{8}$
13. $\frac{5}{25}$
\qquad

Identify Equivalent Fractions
I. Which fraction is equivalent to $\frac{2}{5}$? $\quad 2$. Which fraction is equivalent to $\frac{9}{12}$?
A. $\frac{4}{6}$
B. $\frac{4}{10}$
C. $\frac{5}{10}$
D. $\frac{7}{8}$
A. $\frac{2}{3}$
B. $\frac{1}{4}$
C. $\frac{5}{10}$
D. $\frac{3}{4}$
3. Which fraction is equivalent to $\frac{4}{8}$? 4 . Which fraction is equivalent to $\frac{8}{10}$?
A. $\frac{2}{3}$
B. $\frac{5}{6}$
C. $\frac{8}{16}$
D. $\frac{12}{16}$
A. $\frac{2}{5}$
B. $\frac{3}{6}$
C. $\frac{4}{5}$
D. $\frac{14}{16}$
5. Which fraction is equivalent to $\frac{2}{3}$? 6. Which fraction is equivalent to $\frac{1}{4}$?

9. Maria has jogged 6 laps. She wants to jog a total of 15 laps. The shaded region of which figure models the number of laps Maria has jogged out of the total she wants to jog?
A.
B.
C.
D.

Benchmark Fractions

Benchmark fractions are the frequently used or "known" fractions.
For instance $\frac{1}{2}$ is a benchmark fraction.
You can use benchmark fractions to help understand or determine the size or value of other fractions.
Example: $\quad \frac{1}{6}$ is < or > $\frac{7}{10}$

Think	Say	Do
$\frac{1}{6}$ is less than $\frac{1}{2}$	$\frac{1}{6}<\frac{1}{2}$	
$\frac{7}{10}$ is greater than $\frac{1}{2}$	$\frac{7}{10}>\frac{1}{2}$	$\frac{1}{6}<\frac{7}{10}$

Now you try! Compare the fractions using the benchmark fraction $1 / 2$. Write < on $>$ in the \square

| 1 | $\frac{2}{3} \bigcirc \frac{4}{10}$ | Think: | $2 / 3>$ than $1 / 2$
 $4 / 10<$ than $1 / 2$ |
| :---: | :---: | :---: | :--- | :--- | :--- |$|$| 2 | $\frac{3}{5} \bigcirc \frac{3}{8}$ | Think: | $3 / 5>$ than $1 / 2$
 $3 / 8<$ than
 $1 / 2$ |
| :--- | :--- | :--- | :--- |
| 3 | $\frac{1}{4} \bigcirc \frac{6}{12}$ | Think:$1 / 4<$ than $1 / 2$
 $6 / 12$ is exactly $1 / 2$ | |
| 4 | $\frac{1}{3} \bigcirc \frac{7}{8}$ | Think:$1 / 3<$ than $1 / 2$
 $7 / 8>$ than $1 / 2$ | |

Name

Comparing Fractions to Benchmark Fractions

Look at each fraction below and sort into the correct category.
The first one has been done for you.

1/4, $3 / 7,2 / 3,7 / 10,5 / 5,3 / 6,8 / 20,2 / 4,8 / 8$,
$7 / 12, \quad 6 / 12, \quad 7 / 7, \quad 1 / 3,7 / 9,2 / 6, \quad 5 / 10, \quad 2 / 8,6 / 9,8 / 16$
$7 / 4, \quad 3 / 5, \quad 1 / 2, \quad 3 / 4, \quad 9 / 12, \quad 4 / 8, \quad 6 / 11, \quad 7 / 8, \quad 3 / 9$

Name

Comparing Fractions Using Benchmark Fractions

4.NF 2

Use benchmark fractions to help compare the following. Write $<$, $>$, or $=$ in the

1.

2.

3.

7. $\frac{7}{9} \bigcirc \frac{4}{8}$
8. $\frac{1}{8} \bigcirc \frac{10}{12}$
12.

13. Lily has read $3 / 4$ of her book. Sophie has read 2/6 of her book. Which girl has read more of her book?

Explain how you know.
14. Andy has spent $7 / 10$ of the last hour playing video games. Jordan has spent 6/12 of the last hour playing video games. How do you know Andy spent more time playing video games?
A. Because 7 is more than 6 .
B. Because $7 / 10$ is more than $1 / 2$ and $6 / 12$ is less than $1 / 2$.
C. Because $7 / 10$ is more than $1 / 2$ and $6 / 12$ is exactly $1 / 2$.

Name

Using Models to Compare Fractions

Mande' and Kathleen
both have the same
size cups. Mande' filled her cup 2/4 full with water. Kathleen filled her cup $3 / 8$ full with water. Whose cup has more water? Draw a picture to solve.

Step 1 ~

Draw two rectangles that are the same size.

Step 2 ~
Divide one cup into 4 equal parts.
Divide one cup into 8 equal parts.

Part 3 ~
Shade in 2 of the 4 piece cup. Shade in 3 of the 8 piece cup.

Part 4 ~
Compare the parts.

Draw fraction pictures to compare. Write $<,>$, or $=$ in the

\qquad Practice Sheet

Using Common Denominators to Compare Fractions
List the first few multiples of both denominators.
Find the least common multiple (LCM). Multiply so that both fractions have the LCM as the denominator.

$$
4 \frac{3}{3} \quad \begin{gathered}
3: 3,6,9,12,15 \\
5: 5,10,15 \\
3 \\
\frac{4}{5} \times 3 \\
53 \\
\frac{12}{15}
\end{gathered}
$$

Step I: Find the Least Common Multiple (LCM)	Step 2: Multiply so that both fractions have the LCM as the denominator.	Step 3: Compare fractions $<_{,}>\text {or }=$
$\begin{aligned} & 3 / 4 \bigcirc 5 / 6 \\ & 4: 4,8 / 12 \\ & 6: 6,12 \end{aligned}$	$\frac{3}{4} \frac{\times 3}{x 3}=\frac{9}{12} \quad \frac{5}{6} \frac{x 2}{x 2}=\frac{10}{12}$	$\underset{9 / 12}{3 / 4}<\underset{10 / 12}{5 / 6}$
$\begin{aligned} & 7 / 8 \bigcirc 3 / 4 \\ & 8: \\ & 4: \end{aligned}$		$7 / 8 \bigcirc 3 / 4$
$\begin{aligned} & 5 / 6 \bigcirc 3 / 5 \\ & 6: \\ & 5: \end{aligned}$		$5 / 6 \bigcirc 3 / 5$
3 ckathleen \& Mande'	,	

\qquad Practice Sheet

Using Common Denominators to Compare Fractions More Practice

1. $\begin{aligned} \underline{5}=5 \times 1 \\ 10=5 \times 2\end{aligned}<\frac{3}{3 \times 2}=\underline{6}$
2. $\frac{6}{9} \bigcirc \frac{2}{3}$
3. $\frac{5}{8} \bigcirc \frac{1}{3}$
4. $\frac{4}{5} \bigcirc \frac{7}{10}$
$2: 2,4,6,8,10$ 5: 5, 10
5. $\frac{1}{4} \bigcirc \frac{3}{12}$
6. $\frac{5}{6} \bigcirc \frac{8}{10}$
7. $\frac{2}{4} \bigcirc \frac{4}{6}$
8. $\frac{5}{7} \bigcirc \frac{13}{14}$
\qquad

Cross Multiply to Compare Fractions
Cross multiply denominator x numerator. (Be sure to multiply bottom to top). Compare the products.

Cross multiply to compare the fractions below.
Write $<,>$, or $=$ in the \bigcirc.

1. $\frac{3}{4} \bigcirc \frac{5}{8}$
2. $\frac{2}{12} \bigcirc \frac{3}{5}$
3. $\frac{5}{7} \bigcirc \frac{3}{8}$
4. $\frac{3}{6} \bigcirc \frac{2}{4}$
5. $\frac{8}{10} \bigcirc \frac{7}{9}$
6. $\frac{1}{2} \bigcirc \frac{8}{12}$
7. $\frac{2}{3} \bigcirc \frac{7}{8}$
8. $\frac{1}{5} \bigcirc \frac{2}{12}$
9. $\frac{3}{7} \bigcirc \frac{2}{5}$
10. $\frac{2}{4} \bigcirc \frac{4}{10}$
II. $\frac{3}{8} \bigcirc \frac{5}{6}$
11. $\frac{1}{9} \bigcirc \frac{5}{12}$

Name

Put It All Together

Compare the fractions using one of the strategies below:
(I) Benchmark fractions (2) Common denominators (3) Cross multiplying

1. $\frac{3}{5} \bigcirc \frac{4}{10}$
2.

6. $\frac{1}{3} \bigcirc \frac{4}{12}$
7.

8.

Use models to compare fractions $9-14$.

15. Ernie ate $3 / 4$ of his pizza.

Graham ate $5 / 6$ of his pizza.
Which boy ate more of his pizza?

Explain how you know.
16. Tara walked 8/10 of a mile. Julie walked 6/12 of a mile. How do you know Tara walked more?
A. Because 8 is more than 6 .
B. Because $8 / 10$ is more than $1 / 2$ and $6 / 12$ is less than $1 / 2$.
C. Because $8 / 10$ is more than $1 / 2$ and $6 / 12$ is exactly $1 / 2$.

Name

Compare and Order Fractions

Fractions can be ordered from least to greatest or from greatest to least. Be careful to look for the key words when reading the directions $)$.

You will have 3 or more fractions to order, so try to find the outlier first (the fraction that is clearly the smallest or largest). Then, you can use any strategy you previously learned to determine the order of the others.

Order from Least to Greatest	Find Outlien Fraction	Used a Strategy to Compare Fractions	Fractions in Order
3,	$1 / 2$ is the largest because it is = to 50%.	Now compare $3 / 10$ \& $2 / 5$ Cross Mutiply	
1025	$3 / 10$ and $2 / 5$ are smallen than $1 / 2$.	$15 \frac{3}{10} \times \frac{2}{5} 20$	1052

Write the fractions in order from least to greatest.
I. $2 / 3,1 / 4,5 / 6$
2. $2 / 8,1 / 3,9 / 10$
3. $1 / 4,1 / 8,3 / 6$

Write the fractions in order from greatest to least.
4. $7 / 8,1 / 2,2 / 6$
5. $2 / 6,2 / 4,2 / 5$
6. $1 / 4,3 / 8,1 / 2$
7. Elle ran $3 / 8$ mile, Ava ran $3 / 4$ mile, and McKenzie ran $3 / 6$ mile. Orden the runners from greatest to least.

What strategy did you use?
8. Peter's math book weighs $3 / 4$ pound. His social studies book weighs $1 / 2$ pound, and his language book weighs $1 / 8$ pound. Order the weights of the books from lightest to heaviest.

What strategy did you use?

Name

Compare and Order Fractions

To compare and order fractions, you can also find a common denominator. Then, compare the numerators.

Order from least to greatest	Step I: Find Least Common Multiple (LCM)	Step 2: Muttiply so that both fractions have the LCM as the denominator.	Step 3: Fractions in Order
$\begin{array}{lll}1, & 1, & 3 \\ 4 & 2 & 8\end{array}$	$\begin{array}{ll} \text { 4: } & 4,8,12 \\ 2: & 2,4,8 \\ 8: & 8 \\ & \\ & \text { LCM }=8 \end{array}$		$\begin{array}{lll} \frac{1}{4} & \frac{3}{8} & \frac{1}{2} \end{array}$

Write the fractions in order from least to greatest.
I. $1 / 4,3 / 6,1 / 8$
2. $1 / 5,7 / 8,3 / 4$
3. $1 / 2,2 / 5,6 / 10$

Write the fractions in order from greatest to least.
4. $6 / 8,1 / 2,4 / 6$
5. $1 / 6,3 / 4,2 / 5$
6. $3 / 4,5 / 8,1 / 2$
7. Jackson has three candy bars. The thicknesses of the bars are $3 / 8$ inch, $3 / 4$ inch, and $3 / 6$ inch. What are the thicknesses from greatest to least?
8. Macy, Kalee, and Jess all ran a marathon. Macy has completed 3/4 of the marathon, Kalee has completed $1 / 2$ of the marathon, and Jess has completed $1 / 8$ of the marathon. Order the distances completed from shortest to longest.
\qquad

Put It All Together
Compare the fractions below. Write $<,>$, or $=$ in the

1. $\frac{2}{6} \bigcirc \frac{3}{5}$
2. $\frac{4}{6} \bigcirc \frac{2}{3}$
3. $\frac{5}{8} \bigcirc \frac{3}{4}$
4. $\frac{7}{9} \bigcirc \frac{16}{18}$
5. $\frac{4}{10} \bigcirc \frac{4}{5}$
6. $\frac{1}{3} \bigcirc \frac{5}{15}$
7. $\frac{4}{5} \bigcirc \frac{7}{12}$
8. $\frac{1}{6} \bigcirc \frac{2}{12}$
9. $\frac{3}{8} \bigcirc \frac{8}{12}$
10. $\frac{2}{9} \bigcirc \frac{4}{8}$
II. $\frac{2}{8} \bigcirc \frac{3}{6}$
11. $\frac{1}{4} \bigcirc \frac{7}{12}$

Write the fractions in order from least to greatest.
13. $1 / 5,5 / 10,1 / 3$
14. $1 / 6,7 / 12,3 / 8$
15. $2 / 3,3 / 5,4 / 15$

Write the fractions in order from greatest to least.
16. $5 / 8,1 / 3,4 / 6$
17. $1 / 4,3 / 8,2 / 10$
18. $3 / 6,5 / 12,1 / 10$
\qquad
\qquad
\qquad

